Malicious Cognitive User Identification Algorithm in Centralized Spectrum Sensing System

نویسندگان

  • Jingbo Zhang
  • Lili Cai
  • Shufang Zhang
چکیده

Collaborative spectral sensing can fuse the perceived results of multiple cognitive users, and thus will improve the accuracy of perceived results. However, the multi-source features of the perceived results result in security problems in the system. When there is a high probability of a malicious user attack, the traditional algorithm can correctly identify the malicious users. However, when the probability of attack by malicious users is reduced, it is almost impossible to use the traditional algorithm to correctly distinguish between honest users and malicious users, which greatly reduces the perceived performance. To address the problem above, based on the β function and the feedback iteration mathematical method, this paper proposes a malicious user identification algorithm under multi-channel cooperative conditions (β-MIAMC), which involves comprehensively assessing the cognitive user’s performance on multiple sub-channels to identify the malicious user. Simulation results show under the same attack probability, compared with the traditional algorithm, the β-MIAMC algorithm can more accurately identify the malicious users, reducing the false alarm probability of malicious users by more than 20%. When the attack probability is greater than 7%, the proposed algorithm can identify the malicious users with 100% certainty.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation

Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing accuracy. However, in a realistic scenario, the trustworthy of CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack. In an SSDF attack, some malicious CR users deli...

متن کامل

Secure Collaborative Spectrum Sensing in the Presence of Primary User Emulation Attack in Cognitive Radio Networks

Collaborative Spectrum Sensing (CSS) is an effective approach to improve the detection performance in Cognitive Radio (CR) networks. Inherent characteristics of the CR have imposed some additional security threats to the networks. One of the common threats is Primary User Emulation Attack (PUEA). In PUEA, some malicious users try to imitate primary signal characteristics and defraud the CR user...

متن کامل

Investigation of Always Present and Spectrum Sensing based Incumbent Emulators

Cognitive radio (CR) technology has been suggested for effective use of spectral resources. Spectrum sensing is one of the main operations of CR users to identify the vacant frequency bands. Cooperative spectrum sensing (CSS) is used to increase the performance of CR networks by providing spatial diversity. The accuracy of spectrum sensing is the most important challenge in the CSS process sinc...

متن کامل

An Effective and Optimal Fusion Rule in the Presence of Probabilistic Spectrum Sensing Data Falsification Attack

Cognitive radio (CR) network is an excellent solution to the spectrum scarcity problem. Cooperative spectrum sensing (CSS) has been widely used to precisely detect of primary user (PU) signals. The trustworthiness of the CSS is vulnerable to spectrum sensing data falsification (SSDF) attack. In an SSDF attack, some malicious users intentionally report wrong sensing results to cheat the fusion c...

متن کامل

Attack-Aware Cooperative Spectrum Sensing in Cognitive Radio Networks under Byzantine Attack

Cooperative Spectrum Sensing (CSS) is an effective approach to overcome the impact of multi-path fading and shadowing issues. The reliability of CSS can be severely degraded under Byzantine attack, which may be caused by either malfunctioning sensing terminals or malicious nodes. Almost, the previous studies have not analyzed and considered the attack in their models. The present study introduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Future Internet

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017